x^2+(2x)^2=100

Simple and best practice solution for x^2+(2x)^2=100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+(2x)^2=100 equation:



x^2+(2x)^2=100
We move all terms to the left:
x^2+(2x)^2-(100)=0
We add all the numbers together, and all the variables
3x^2-100=0
a = 3; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·3·(-100)
Δ = 1200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1200}=\sqrt{400*3}=\sqrt{400}*\sqrt{3}=20\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{3}}{2*3}=\frac{0-20\sqrt{3}}{6} =-\frac{20\sqrt{3}}{6} =-\frac{10\sqrt{3}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{3}}{2*3}=\frac{0+20\sqrt{3}}{6} =\frac{20\sqrt{3}}{6} =\frac{10\sqrt{3}}{3} $

See similar equations:

| 7/17=12/y | | (6x+18)/(2x+3)=1 | | 114*(x-23)-(3675/23)=0 | | 7+3x/4=-2 | | 3(f-9)+10(f-11)=90 | | 3^(3x)=27 | | 114x+307=23 | | 23x+307=23 | | z+(-9)=4 | | 6(2-a)=9(a-4) | | -15=37b | | (30/140)=(100/x) | | x=((12/9)/2)^2 | | 9^(x+7)=81 | | P(1x)=3x-5 | | 9(6s-5)=54s-45 | | y=40+3*6 | | y=45+2*6 | | 8n+(9n-5)=360 | | J=3k-I | | 8-(4-4n)+17n=-6+18(n+1) | | -2(x+4)=-35 | | 5a+26=3a+26 | | 7x=784 | | (2x+13)(x-7)=0 | | 5a+7=2a+47 | | 4c-5+14c=87 | | x^2-x+1=2x1 | | x2+19=6.5x | | 3(2x+1=6x+4 | | 18j^2+41j=0 | | 3a^-27=0 |

Equations solver categories